# 定义模型
model = Sequential()
model.add(Convolution2D(input_shape=(150,150,3), filters=12, kernel_size=3, strides=1, padding='same', activation = 'relu'))
model.add(Convolution2D(filters=5, kernel_size=3, strides=1, padding='same', activation = 'relu'))
model.add(MaxPooling2D(pool_size=2, strides=2, padding='valid'))
model.add(Flatten())
model.add(Dense(128,activation = 'relu'))
model.add(Dropout(0.5))
model.add(Dense(10,activation = 'softmax'))
model = Sequential()
model.add(Convolution2D(input_shape=(150,150,3), filters=12, kernel_size=3, strides=1, padding='same', activation = 'relu'))
model.add(Convolution2D(filters=5, kernel_size=3, strides=1, padding='same', activation = 'relu'))
model.add(MaxPooling2D(pool_size=2, strides=2, padding='valid'))
model.add(Flatten())
model.add(Dense(128,activation = 'relu'))
model.add(Dropout(0.5))
model.add(Dense(10,activation = 'softmax'))