数论吧 关注:14,486贴子:84,558
  • 3回复贴,共1

已知的2染色范德瓦尔登数

只看楼主收藏回复

范德瓦尔登定理 (van der Waerden's theorem) 的证明在之前Euler老师的帖子里面有介绍
https://tieba.baidu.com/p/9674514370
定理中n(k,l)能取的最小可能值可以记作W(k,l), 而当k=2时, 对给定的正整数a,b, 可以更具体地把满足以下条件的最小正整数n记作w(2;a,b), 或者简记为w(a,b):
只要将{1,2,…,n}划分成A,B两个不交子集的并集, 那要么A中含有长为a的算术级数, 要么B中含有长为b的算术级数 (*)
这样的定义明显满足w(a,b)=w(b,a), 并且当a=b=l时w(l,l)=W(2,l), 当a<b时, w(a,b)等价地相当于要求要么A,B中都有长为a的算术级数, 要么A,B中至少有一个含长为b的算术级数.
要确定某个w(a,b)的值等于m, 需要证明{1,2,…,m-1}存在不满足定义(*)要求的划分A,B, 并且证明{1,2,…,m}的任意划分都满足要求. 两者的构造基本都需要大量计算寻找, 但前者的验证比后者简单
另外对更大的k, 还可以类似地定义w(k; a_1, a_2 ,…, a_k), 其中a_1, a_2 ,…, a_k是大于1的整数. 要确定w(k; a_1, a_2 ,…, a_k)的值一般都很困难, 上世纪以来, 计算数论学家们的研究只确定了一些较小的情况下w的值, 并逐步改进了一般情况下w的上下界 (相差巨大)
其中如果a_1, a_2 ,…, a_k当中最多只有1个数大于2, 要确定w的值会相对简单, 而如果至少有2个大于2的数, 要确定w的值都可以称作非平凡, 其中k=2的非平凡情况就相当于w(a,b)当中a,b>2
这个帖子中w(a,b)的非平凡的已知结果整理自oeis的相关数列, 并且注明了最早记录对应数据的论文, 可能是因为这个问题研究年代跨度久远, 涉及领域也太广, 不同文献用的记号并不统一, 以至于oeis用的记号也有点混乱, 这个帖子里的w(a,b)是按照上面的定义(*), 后面的中括号表示发现者或最早出处
(只整理了k=2 (2染色)的情况, 如果能整理清楚的话帖子后面再补充一些k=3,k=4的已知结果)


IP属地:安徽1楼2025-04-29 03:32回复
    k=2时w(a,b) (3≤a≤b) 的已知结果包括:
    [¹] w(3,3) = 9
    [¹] w(3,4) = 18
    [¹] w(3,5) = 22
    [¹] w(3,6) = 32
    [¹] w(3,7) = 46
    [⁴] w(3,8) = 58
    [⁴] w(3,9) = 77
    [⁴] w(3,10) = 97
    [⁵] w(3,11) = 114
    [⁵] w(3,12) = 135
    [⁵] w(3,13) = 160
    [⁶] w(3,14) = 186
    [⁶] w(3,15) = 218
    [⁶] w(3,16) = 238
    [⁹] w(3,17) = 279
    [⁹] w(3,18) = 312
    [¹²] w(3,19) = 349
    [¹] w(4,4) = 35
    [¹] w(4,5) = 55
    [⁴] w(4,6) = 73
    [³] w(4,7) = 109
    [⁶] w(4,8) = 146
    [¹⁰] w(4,9) = 309
    [²] w(5,5) = 178
    [⁶] w(5,6) = 206
    [¹¹] w(5,7) = 260
    [⁷] w(6,6) = 1132


    IP属地:安徽来自Android客户端3楼2025-04-29 03:46
    回复
      2025-07-13 20:41:13
      广告
      以下文献[1]~[12]除了[6]以外基本都可以看到电子版
      [1] Vašek Chvátal. Some unknown van der Waerden numbers. in: Combinatorial Structures and Their Applications (R.Guy et al.,eds.), Gordon and Breach, New York, 1970, pp.31-33.
      https://users.encs.concordia.ca/~chvatal/vwn.pdf
      [2] R.S.Stevens,R. Shantaram. Computer-generated van der Waerden partitions. Mathematics of computation, Vol .32, No.142, April 1978, p635-636
      https://www.ams.org/journals/mcom/1978-32-142/S0025-5718-1978-0491468-X/S0025-5718-1978-0491468-X.pdf
      [3] Michael D. Beeler. A new Van der Waerden number. Discrete Applied Mathematics, 6(1983)207.
      https://www.sciencedirect.com/science/article/pii/0166218X83900732
      [4] Michael D. Beeler, Patrick E. O'Neil. Some new Van der Waerden numbers. Discrete Mathematics 28 (1979)135-146.
      https://www.sciencedirect.com/science/article/pii/0012365X79900906
      [5] Bruce Landman, Aaron Robertson, Clay Culver. Some new exact van der Waerden numbers. Integers: Electronic J. Combinatorial Number Theory, 5(2)(2005), A10, MR219208.
      https://arxiv.org/abs/math/0507019
      [6] Michal Kouril. A backtracking framework for beowulf clusters with an extension to multi-cluster computation and sat benchmark problem implementation. Ph. D. Thesis, University of Cincinnati, Engineering : Computer Science and Engineering, 2006.
      [7] Michal Kouril, Jerome L.Paul. The van der Waerden number W(2,6) is 1132. Experiment. Math.17(1): 53-61 (2008).
      https://projecteuclid.org/journals/experimental-mathematics/volume-17/issue-1/The-van-der-Waerden-Number-W26-Is-1132/em/1227031896.full
      [8] Tanbir Ahmed. Some new van der Waerden numbers and some van der Waerden-type numbers. Integers, 9 (2009), A06, 65–76.
      https://math.colgate.edu/~integers/j6/j6.pdf
      [9] Tanbir Ahmed. Two new Van der Waerden numbers: w(2; 3,17) and w(2;3,18). Integers,10,(2010), A32, 369–377.
      https://math.colgate.edu/~integers/k32/k32.pdf
      [10] Tanbir Ahmed. On computation of exact van der Waerden numbers. Integers,11 (2011), A71.
      https://math.colgate.edu/~integers/l71/l71.pdf
      [11] Tanbir Ahmed. Some more van der Waerden numbers. Journal of Integer Sequences, 16(4), 2013. #13.4.4.
      https://cs.uwaterloo.ca/journals/JIS/VOL16/Ahmed/ahmed2.pdf
      [12] Tanbir Ahmeda, Oliver Kullmannb, Hunter Snevilyc. On the van der Waerden numbers w(2;3,t). Discrete Applied Mathematics, Vol 174, 10 September 2014, p27-51
      https://www.sciencedirect.com/science/article/pii/S0166218X14002091


      IP属地:安徽本楼含有高级字体5楼2025-04-29 04:48
      回复
        在以下链接可以看到[6]的简介, 称文中确定了w(5,6)=206, w(4,8)=146, w(3,16)=238. 而按照[8]中列举的表格, [6]还给出了w(3,14)和w(3,15)的值, 可能是错引, 但没有找到w(3,14)和w(3,15)的其它可能出处
        https://dl.acm.org/doi/book/10.5555/1269342


        IP属地:安徽6楼2025-04-29 04:50
        回复