土地信息系统吧 关注:6贴子:14
  • 0回复贴,共1

对LIS数据质量的熟悉

取消只看楼主收藏回复

数据是一种未经加工的原始资料,是客观对象的表示,它可以是数字、文字、符号、图像,数据是信息的具体表达形式。一个LIS系统包括空间数据、属性数据、空间数据之间的关系以及空间数据与属性数据之间的关联。
人们往往以为计算机为基础的信息系统的数据质量是可靠的,很少怀疑利用信息系统产生的分析结果在数据质量方面会有问题,但事实远非如此。在某些情况下,由于多种原因,计算机分析的结果甚至会比手工分析的误差更大。这里除软件、硬件的质量问题,计算方法上的问题,以及分类、编码、输入、操作的明显疏忽外,数据本身的质量是重要的原因。
众所周知,数据是LIS的“血液”,是组成系统的重要元素。数据质量的好坏是土地信息系统成功与否的关键所在;数据质量的高低优劣,都直接影响到土地信息系统的经济效益和社会效益,决定了系统应用价值的大小;数据的可靠,质量的好坏将直接影响到整个系统的成败。系统假如不能提供正确、可靠的信息,这个系统也就失去了存在的价值。
数据质量的好坏是一个相对概念,并具有一定的针对性。衡量其好坏主要有以下几个指标:误差、数据的准确度、数据的精度和不确定性[1]。数据质量是数据整体性能的综合体现。
统而言之,数据的质量问题主要表现在两个方面:一是数据是否及时反映了现实世界;二是数据是否保持了一致性和完整性。
土地信息系统的数据量大,数据来源广,数据采集的任务重,在数据库建立过程中会出现许多人为和系统的误差,甚至还有可能产生数据错误,最后采集的数据无法准确反映规划和治理的实际状况,建立在此数据库基础上的系统往往也就达不到治理自动化辅助决策的目的,而只不过是“看看而已”的一种“摆设”罢了。
数据库(包括空间数据库和非空间数据库)是土地信息系统最基本、最重要的组成部分,也是投资比重最大的部分。数据质量的好坏,直接影响系统的功能和应用。不仅要根据技术规程衡量数据质量,还要从数据使用角度分析数据质量问题。数据质量通常是指数据的可靠性和精度,它主要用数据的误差来度量的。现就土地信息系统建立过程中的数据质量问题作进一步的探讨。


IP属地:江苏来自Android客户端1楼2015-02-01 15:45回复